Πέμπτη 30 Δεκεμβρίου 2010
Κυριακή 4 Ιουλίου 2010
*
Παρασκευή 2 Απριλίου 2010
Προγραμμα πανελληνίων 2010
ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β΄) ΣΤΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΕΠΙΛΟΓΗΣ
ΗΜΕΡΑ | ΗΜΕΡ/ΝΙΑ | ΜΑΘΗΜΑ | ΚΑΤΗΓΟΡΙΑ ΜΑΘΗΜΑΤΟΣ |
ΠΑΡΑΣΚΕΥΗ | 14-05-2010 | ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ | ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ |
ΔΕΥΤΕΡΑ | 17-05-2010 | ΒΙΟΛΟΓΙΑ ΦΥΣΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΙΣΤΟΡΙΑ | ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
|
ΤΕΤΑΡΤΗ | 19-05-2010 | ΝΕΟΕΛΛΗΝΙΚΗ ΛΟΓΟΤΕΧΝΙΑ ΜΑΘΗΜΑΤΙΚΑ | ΘΕΩΡΗΤΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ |
ΠΑΡΑΣΚΕΥΗ | 21-05-2010 | ΙΣΤΟΡΙΑ ΒΙΟΛΟΓΙΑ ΧΗΜΕΙΑ – ΒΙΟΧΗΜΕΙΑ ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ | ΘΕΩΡΗΤΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ |
ΤΕΤΑΡΤΗ | 26-05-2010 | ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΦΥΣΙΚΗ | ΘΕΩΡΗΤΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ |
ΠΑΡΑΣΚΕΥΗ | 28-05-2010 | ΛΑΤΙΝΙΚΑ ΧΗΜΕΙΑ ΗΛΕΚΤΡΟΛΟΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ | ΘΕΩΡΗΤΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝ/ΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) |
ΔΕΥΤΕΡΑ | 31-05-2010 | ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ | ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ |
ΠΡΟΓΡΑΜΜΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2010 Α' ΟΜΑΔΑ ΕΠΑΛ
ΚΑΙ ΕΙΔΙΚΟΤΗΤΕΣ ΕΠΑΛ Β
ΗΜΕΡΑ | ΗΜΕΡ/ΝΙΑ | ΕΞΕΤΑΖΟΜΕΝΑ ΜΑΘΗΜΑΤΑ |
ΤΡΙΤΗ | 25-05-2010 | ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ |
ΠΕΜΠΤΗ | 27-5-2010 | ΜΑΘΗΜΑΤΙΚΑ Ι |
ΤΡΙΤΗ | 01-06-2010 | ΑΡΧΙΤΕΚΤΟΝΙΚΟ ΣΧΕΔΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ |
ΤΕΤΑΡΤΗ | 02-06-2010 | ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΨΥΞΗΣ ΤΕΧΝΟΛΟΓΙΑ ΕΚΤΥΠΩΣΕΩΝ ΣΤΟΙΧΕΙΑ ΑΙΜΑΤΟΛΟΓΙΑΣ-ΑΙΜΟΔΟΣΙΑΣ ΣΥΓΧΡΟΝΕΣ ΓΕΩΡΓΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ |
ΠΕΜΠΤΗ | 03-06-2010 | ΣΤΟΙΧΕΙΑ ΣΧΕΔΙΑΣΜΟΥ ΚΕΝΤΡΙΚΩΝ ΘΕΡΜΑΝΣΕΩΝ ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΟΙΚΟΔΟΜΙΚΗ ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ |
ΠΑΡΑΣΚΕΥΗ | 04-06-2010 | ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΚΛΙΜΑΤΙΣΜΟΥ ΜΗΧΑΝΕΣ ΕΣΩΤΕΡΙΚΗΣ ΚΑΥΣΗΣ ΙΙ ΦΥΤΙΚΗ ΠΑΡΑΓΩΓΗ ΑΡΧΕΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΤΡΟΦΙΜΩΝ |
ΣΑΒΒΑΤΟ | 05-06-2010 | ΣΥΣΤΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΓΡΑΦΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟΙΧΕΙΑ ΑΝΑΤΟΜΙΑΣ-ΦΥΣΙΟΛΟΓΙΑΣ ΙΙ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΙΙ |
ΔΕΥΤΕΡΑ | 07-06-2010 | ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΙΙ ΑΝΘΟΚΗΠΕΥΤΙΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΝΑΥΣΙΠΛΟΪΑ ΙΙ ΒΟΗΘΗΤΙΚΑ ΜΗΧΑΝΗΜΑΤΑ ΙΙ |
ΤΡΙΤΗ | 08-06-2010 | ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΤΟΙΧΕΙΑ ΠΑΘΟΛΟΓΙΑΣ ΥΓΙΕΙΝΗ ΚΑΙ ΑΣΦΑΛΕΙΑ ΤΡΟΦΙΜΩΝ ΑΓΩΓΗ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ |
ΤΕΤΑΡΤΗ | 09-06-2010 | ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΜΗΧΑΝΕΣ ΠΛΟΙΟΥ Ι ΜΕΤΑΦΟΡΑ ΦΟΡΤΙΩΝ ΔΙΑΜΟΡΦΩΣΗ ΤΟΠΙΟΥ |
Ως ώρα έναρξης εξέτασης ορίζεται η 08:00 π.μ.
Οι υποψήφιοι πρέπει να προσέρχονται στις αίθουσες εξέτασης μέχρι τις 07.30 π.μ.
Η διάρκεια εξέτασης κάθε μαθήματος είναι τρεις (3) ώρες, εκτός από τα μαθήματα ειδικότητας: Αρχιτεκτονικό Σχέδιο και Γραφιστικές Εφαρμογές για τα οποία η διάρκεια εξέτασης είναι τέσσερις (4) ώρες.
ΠΡΟΓΡΑΜΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΣΠΕΡΙΝΩΝ ΕΠΑΛ (ΟΜΑΔΑ-Α)
ΗΜΕΡΑ | ΗΜΕΡ/ΝΙΑ | ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ |
ΤΡΙΤΗ | 25-5-2010 | ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ |
ΠΕΜΠΤΗ | 27-5-2010 | ΜΑΘΗΜΑΤΙΚΑ |
Κυριακή 28 Μαρτίου 2010
Γκούγκολ και Γκούγκολ-πλεξ
Ισως το GOOGLE ,η πασιγνωστη αναζήτηση μηχανης στο Internet, να είναι ένα λογοπαίγνιο της λέξης googol και να συμβολίζει την πεποίθηση της εταιρείας να οργανώσει τον φαινομενικά άπειρο αριθμό πληροφοριών που κυκλοφορούν στο διαδίκτυο.
Σάββατο 27 Μαρτίου 2010
O αριθμος "φ"
Τι κοινό έχουν μια πιστωτική κάρτα, η αναπαραγωγή των κουνελιών, το κουνουπίδι και ο Παρθενώνας; Η απάντηση ακούει στο όνομα 1,618033..., το χρυσό αριθμό. Μάθετε τι τον καθιστά τόσο μαγικό!
Τι το ιδιαίτερο έχει, λοιπόν, αυτός ο αριθμός; Σε τι διαφέρει από τους άλλους; Όπως ο π (3,141592...) εκφράζει το πιο τέλειο γεωμετρικό σχήμα, τη σφαίρα, έτσι και ο φ (1,618033...) είναι ο αριθμός της ομορφιάς. Ο μοναχός του 15ου αιώνα Λούκα Πατσιόλι, επηρεασμένος από την αντίληψη της εποχής ότι οι νέες γνώσεις της επιστήμης έπρεπε να ενταχθούν στο εκκλησιαστικό δόγμα, τον ονόμασε Η θεία αναλογία. Πού αναφέρεται αυτή η φράση, που θα ταίριαζε μάλλον σε αλχημιστή ή αποκρυφιστή παρά σε μαθηματικό; Στο «χρυσό αριθμό», ονομασία που αποδίδεται στον Λεονάρντο Ντα Βίντσι. Αιώνες αργότερα, ο Αμερικανός μαθηματικός Μαρκ Μπαρ θα τον προσδιόριζε με το ελληνικό γράμμα φι, προς τιμήν του γλύπτη Φειδία, ο οποίος με βάση αυτόν τον αριθμό δημιουργούσε τα έργα του.
Μαθηματική ομορφιά
Ο φ ανήκει στους άρρητους αριθμούς, δηλαδή εκείνους που δεν μπορούμε να εκφράσουμε ως κλάσμα δύο ακέραιων. Για παράδειγμα, η τετραγωνική ρίζα του δύο είναι άρρητος αριθμός: αυτή η ανακάλυψη προκάλεσε τέτοια αμηχανία στους πυθαγόρειους, που την απέκρυψαν από τον υπόλοιπο κόσμο. Σήμερα, για να υπολογίσουμε το χρυσό αριθμό, αρκεί να χρησιμοποιήσουμε ένα κομπιουτεράκι και να ακολουθήσουμε τις εξής απλές οδηγίες: πρώτα υπολογίζουμε την τετραγωνική ρίζα του 5. Μετά προσθέτουμε 1 στο αποτέλεσμα και τέλος το διαιρούμε διά 2.
Σε μαθηματικούς όρους, χρυσός αριθμός είναι εκείνος που αν του προσθέσουμε το 1 θα μας δώσει το ίδιο αποτέλεσμα το οποίο θα έχουμε και αν τον υψώσουμε στο τετράγωνο. Δηλαδή, αν ο χρυσός αριθμός ήταν το 4, θα έπρεπε να είχαμε το ίδιο αποτέλεσμα είτε κάναμε τον πολλαπλασιασμό 4 επί 4 είτε κάναμε την πρόσθεση 4 συν 1, που όμως δεν ισχύει. Στην πραγματικότητα, πάντως, υπάρχουν δύο χρυσοί αριθμοί, ένας θετικός (1,618033...) και ένας αρνητικός (-1,618033...), αλλά ο πρώτος έχει κλέψει όλη τη δόξα.
Πανταχού παρών
Όμως, το μυστήριο με αυτόν τον παράξενο αριθμό είναι ότι το συναντάμε στην ανάπτυξη των φυτών, την κατανομή των φύλλων σε ένα μίσχο και τα όστρακα. Κρύβεται επίσης στις πιστωτικές κάρτες, στις αναλογίες του Παρθενώνα και στο διαχρονικό πρότυπο του αρμονικού ανθρώπινου σώματος, στον Άνθρωπο του Βιτρούβιου, έργο του Λεονάρντο Ντα Βίντσι.
Ακολουθώντας τα βήματα του αρχιτέκτονα της Αναγέννησης Λεόν Μπατίστα Αλμπέρτι και του γλύπτη Αντόνιο Φιλαρέτε, ο Λεονάρντο πίστευε ότι υπάρχει στενή σχέση ανάμεσα στην ανατομία και την αρχιτεκτονική. Τη δεκαετία του 1480, όταν προσέφερε τις υπηρεσίες του στον δούκα του Μιλάνου, εμβάθυνε στη σχέση των δύο επιστημών και δημιούργησε το διάσημο σχέδιο το 1487. Το σχέδιο αυτό βασίστηκε στην πραγματεία που είχε γράψει για το ανθρώπινο σώμα ο Ρωμαίος αρχιτέκτονας Μάρκος Πολλίωνας Βιτρούβιος.
Η χρυσή τελειότητα
Στην περιγραφή του, ο Πολλίωνας αναφέρει: «Στο ανθρώπινο σώμα, το κέντρο είναι ο ομφαλός. Επομένως, αν ένας άντρας ξαπλώσει με το πρόσωπο προς τα πάνω, τα χέρια και τα πόδια του αναπτυγμένα, και σχεδιάσουμε έναν κύκλο με κέντρο τον ομφαλό, τα δάχτυλα των χεριών και των ποδιών θα αγγίξουν την περιφέρεια του κύκλου. Μπορούμε επίσης να περικλείσουμε το σώμα με ένα ορθογώνιο σχήμα». Αν διαιρέσουμε τη μια πλευρά του ορθογωνίου (το ύψος του ανθρώπου) με την ακτίνα του κύκλου (την απόσταση από τον ομφαλό μέχρι την άκρη των δαχτύλων), θα έχουμε το χρυσό αριθμό. Έτσι, για να ανακαλύψει κάποιος κατά πόσο ανταποκρίνεται στο πρότυπο της αισθητικής τελειότητας, δεν έχει παρά να πάρει μια μεζούρα.
Σιγά σιγά ο Λεονάρντο παθιάστηκε με την αναζήτηση μοτίβων που συνέδεαν την ανατομία με την αρχιτεκτονική, με την αρμονία της μουσικής, ακόμη και με την ίδια τη φύση. Η προσπάθειά του να βρει αναλογίες και να συσχετίσει την περιφέρεια των κορμών των δέντρων με το ύψος των κλαδιών τους ήταν επίπονη αλλά μάταια. Ωστόσο, δεν επρόκειτο απλώς για μια εμμονή, καθώς, όταν παρατηρούμε τη φύση, μπορούμε να εντοπίσουμε το χρυσό αριθμό σε πολλά διαφορετικά παραδείγματα. Αλλά προτού ασχοληθούμε με αυτό το ζήτημα θα ταξιδέψουμε ακόμη πιο πίσω στο παρελθόν, και πιο συγκεκριμένα στο 13ο αιώνα, όταν ένας μαθηματικός είχε μια περίεργη εμμονή με τα κουνέλια και τη διαδικασία αναπαραγωγής τους.
Αχ, κουνελάκι
Το 1202 ο Λεονάρντο Φιμπονάτσι προσπάθησε να υπολογίσει την ταχύτητα αναπαραγωγής των κουνελιών στη Γη σε ιδανικές συνθήκες. Ας υποθέσουμε, έλεγε, ότι έχουμε ένα μοναδικό ζευγάρι, το οποίο αρχίζει να αναπαράγεται από τον πρώτο κιόλας μήνα και μετά από κάθε μήνα κύησης γεννά ένα ακόμη ζεύγος. Και ότι κάθε νέο ζεύγος γίνεται γόνιμο σε δύο μήνες μετά τη γέννησή του και αρχίζει να αναπαράγεται με τον ίδιο ρυθμό. Πόσα ζευγάρια κουνελιών θα έχουμε στο τέλος του πρώτου χρόνου; Στο τέλος του πρώτου μήνα το αρχικό ζευγάρι είναι έτοιμο να τεκνοποιήσει, αλλά υπάρχει μόνο αυτό. Στο τέλος του δεύτερου μήνα έχουμε το αρχικό ζευγάρι και το πρώτο ζευγάρι παιδιών του. Στο τέλος του τρίτου μήνα έχουμε το αρχικό ζευγάρι, το πρώτο ζευγάρι παιδιών του, που είναι έτοιμα κι αυτά να τεκνοποιήσουν, και ένα δεύτερο ζεύγος παιδιών του. Στο τέλος του τέταρτου μήνα έχουμε το αρχικό ζευγάρι και το τρίτο ζεύγος παιδιών του, το πρώτο ζεύγος παιδιών και το πρώτο δικό τους ζεύγος παιδιών, καθώς και το δεύτερο ζεύγος παιδιών, που είναι έτοιμο να τεκνοποιήσει. Πιο συγκεκριμένα, η ακολουθία των ζευγαριών κουνελιών είναι: 1, 1, 2, 3, 5. Μπορείτε να εντοπίσετε το μοτίβο που κρύβεται πίσω από αυτή την αλληλουχία; Αν την επεκτείνουμε λίγο ακόμα, τα πράγματα αρχίζουν να ξεκαθαρίζουν: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233... Δηλαδή, για να δημιουργήσουμε τη λεγόμενη ακολουθία Φιμπονάτσι (γνωστή και ως «αριθμοί Φιμπονάτσι»), αρκεί να προσθέσουμε τα δύο προηγούμενα νούμερα για να έχουμε το αμέσως επόμενο.
Όμως, τι σχέση έχει αυτή η ακολουθία με το χρυσό αριθμό; Κάντε το παρακάτω πείραμα: πάρτε ένα κομπιουτεράκι και διαιρέστε οποιοδήποτε νούμερο με το αμέσως προηγούμενό του. Όσο προχωράτε στην ακολουθία, το πηλίκο θα προσεγγίζει ολοένα και περισσότερο το χρυσό αριθμό. Σε μαθηματικούς όρους, αυτό σημαίνει ότι η ακολουθία που δημιουργείται από τη διαίρεση κάθε αριθμού Φιμπονάτσι με τον αμέσως προηγούμενό του έχει ως όριο το χρυσό αριθμό.
Παρθενογένεση στο μελίσσι
Το πρόβλημα με τα κουνέλια του Φιμπονάτσι είναι ότι αποτελούν μια εξιδανικευμένη υπόθεση. Υπάρχει λοιπόν στη φύση κάποιο υπαρκτό παράδειγμα όπου συναντάμε αυτή τη χρυσή ακολουθία; Υπάρχει, στο γενεαλογικό δέντρο κάθε κηφήνα σε ένα μελίσσι. Το εν λόγω έντομο γεννιέται από ένα μη γονιμοποιημένο αβγό της βασίλισσας, δηλαδή έχει μητέρα αλλά όχι και πατέρα. Αντιθέτως, τόσο η βασίλισσα (η μοναδική που μπορεί να κάνει αβγά) όσο και οι εργάτριες γεννιούνται από αβγά που έχουν γονιμοποιηθεί από αρσενικό. Αυτές, λοιπόν, έχουν και πατέρα και μητέρα. Επομένως, το γενεαλογικό δέντρο του κηφήνα διαμορφώνεται ως εξής: έχει 1 μητέρα, 2 παππούδες (αρσενικό και θηλυκό), 3 προπαππούδες (δύο από την οικογένεια της γιαγιάς και μία του παππού), 5 προ-προπαππούδες, 8 προ-προ-προπαππούδες και ούτω καθεξής. Το γενεαλογικό δέντρο του κηφήνα είναι μια ακολουθία Φιμπονάτσι! Και όχι μόνο αυτό. Το 1966, ο Νταγκ Γιανέγκα, από το Μουσείο Έρευνας στην Εντομολογία του Πανεπιστημίου της Καλιφόρνιας, ανακάλυψε ότι η αναλογία που υφίσταται ανάμεσα σε εργάτριες μέλισσες και κηφήνες σε ένα μελίσσι προσεγγίζει το χρυσό αριθμό.
Η διάσημη σπείρα
Ας μετατρέψουμε τώρα τους αριθμούς σε τετράγωνα. Τοποθετούμε δύο ίσα τετράγωνα οποιουδήποτε μεγέθους το ένα δίπλα στο άλλο, έτσι ώστε οι πλευρές τους να εφάπτονται. Στην κορυφή τους σχεδιάζουμε ένα ακόμη, με διπλάσια πλευρά. Στα δεξιά προσθέτουμε ένα ακόμη, με τριπλάσια πλευρά. Από κάτω ζωγραφίζουμε κι άλλο, με πενταπλάσια πλευρά. Συνεχίζουμε έτσι ώστε η πλευρά κάθε νέου τετραγώνου να αποτελεί το άθροισμα των δύο προηγούμενων. Στη συνέχεια, αν σχεδιάσουμε σε κάθε τετράγωνο το ένα τέταρτο μιας καμπύλης γραμμής (ξεκινώντας από το πρώτο), όπως στο σχέδιο της δεύτερης σελίδας του θέματος, θα έχουμε μια λογαριθμική σπείρα, πανομοιότυπη με το σχήμα ενός οστρακοειδούς, του ναυτίλου.
Τώρα πάρτε ένα μολύβι και χαράξτε μια γραμμή από το κέντρο της σπείρας προς τα έξω. Τονίστε δύο σημεία όπου αυτή η γραμμή τέμνει τη σπείρα, με την προϋπόθεση ανάμεσά τους η σπείρα να εκτελεί μία ολοκληρωμένη περιστροφή. Θα διαπιστώσετε ότι το εξωτερικό σημείο είναι 1,618 φορές πιο μακριά από το κέντρο από το εσωτερικό. Δηλαδή, ο χρυσός αριθμός είναι ο παράγοντας ανάπτυξης του ναυτίλου.
Πού αλλού συναντάμε τους αριθμούς Φιμπονάτσι; Στον αριθμό της σπείρας που μπορούμε να μετρήσουμε αριστερά και δεξιά στους σπόρους των ηλίανθων, στον αριθμό των πετάλων των λουλουδιών (3 στο αγριόκρινο, 5 ή 8 σε κάποια φυτά του γένους ranunculus, ενώ οι μαργαρίτες και οι ηλίανθοι συνήθως έχουν 13, 21, 34, 55 ή 85 πέταλα...) και στον αριθμό των ανθών στα σπιράλ του κουνουπιδιού και του μπρόκολου. Με τον ίδιο τρόπο, μπορούμε να εντοπίσουμε τους αριθμούς Φιμπονάτσι στον πλάτανο και τη μηλιά.
Το καλύτερο σύστημα οργάνωσης
Για ποιο λόγο η φύση δείχνει ιδιαίτερη αδυναμία στην ακολουθία Φιμπονάτσι; Τα φύλλα, τα πέταλα και οι σπόροι οργανώνονται στα φυτά ακολουθώντας ένα συγκεκριμένο μοτίβο γιατί έτσι, καθώς αναπτύσσονται, αξιοποιούν με τον καλύτερο δυνατό τρόπο το διαθέσιμο χώρο. Αν κατανείμουμε τα φύλλα στο μίσχο σύμφωνα με το χρυσό αριθμό, όλα θα επωφελούνται στο μέγιστο βαθμό από το φως του ήλιου, χωρίς να κρύβει το ένα το άλλο. Τα λουλούδια, χάρη στο χρυσό αριθμό, προσελκύουν όσο το δυνατόν καλύτερα τα έντομα που μεταφέρουν τη γύρη. Η ακολουθία Φιμπονάτσι είναι η πιο επιτυχημένη προσέγγιση του αριθμού φ. Μετά από όλα αυτά, δε μας κάνει εντύπωση το γεγονός ότι ο Παρθενώνας είναι κατασκευασμένος σύμφωνα με το χρυσό αριθμό. Το ίδιο συμβαίνει και με τις διαστάσεις των πιστωτικών καρτών. Εξάλλου, υπάρχει τίποτα ωραιότερο στη φύση από μια Visa χωρίς πιστωτικό όριο;
Πέμπτη 14 Ιανουαρίου 2010
2010......το 10 το καλό!!
στο μαθημα των Μαθηματικών. Βασική μου επιδίωξη ειναι να λυσω ο,τι αποριες έχετε στα μαθηματικα, στην εκπαίδευση,
στην διδακτέα ύλη αλλά και να αναρτήσω ΥΛΙΚΟ που μπορεί να σας φανεί χρήσιμο. Κάνω λοιπόν ποδαρικό στο προσωπικό μου
blog και έτσι θα ξεκινήσω απο την αρχή με ενα αρχείο που θα με βοηθήσει να μάθω,να διαβάσω και να καταννοήσω καλύτερα τα μαθηματικα.